Hallo temen-temen???
Pertama-tama gue ucapin trimakasih buat para pengunjung weblog gue :). Slamat datang di weblog paling bermanfaat sedunia.
Dan gue doaian semoga orang-orang yang ngunjungin weblog gue pada masuk surga semua, trs selama hidupnya selalu di beri kemudahan, trs all the best deh buat kalian :D
Udah kaya ulang tahun aja ya ???.... Sorry ya klo penulis suka bercanda :)
Kembali lagi bersama gue muhamad pajar sidik, gue adalah seorang penulis blogger yang ganteng dan baik hati :D cieeee.....
Di hari yang indah ini alhamdulillah gue bisa nulis artikel kembali, yang mudah-mudahan artikel ini bisa bermanfaat buat kalian semua.
Kali ini gue bakalan nulis artikel tentang Bukti Langsung Sifat Fermat, Tanpa panjang lebar lagi yo cheque it out !
Bukti Langsung Sifat Fermat
Berdasarkan algoritma pembagian, maka a = qp + s, sehingga berlaku a ≡ second (mod p). Akibatnya :
ap ≡ sp (mod p)
Oleh karena itu kita cukup membuktikan bahwa sp-1 ≡ 1(mod p) dengan 0 < second < p.
Perhatikan bilangan berikut :
1.s, 2.s, ..., (p - 1) . s
Bilangan ini tak ada yang habis dibagi oleh p dan jika dibagi oleh p semua sisanya adalah berbeda. Karena jika ada yang sama, misalkan a . second dan b . s memberikan sisa sama jika dibagi p, maka :
a . second ≡ b . second (mod p)
a ≡ b (mod p) karena 1 < second < p
maka a = b karena 1 < a,b < p. Oleh karena itu jika dibagi p akan memberikan sisa 1, 2, .... , p - 1 dalam suatu urutan. Akibatnya :
(1 . s)(2 . s) .... [(p - 1)s] ≡ i . ii . .... . (p - 1) (mod p)
sp-1 (1 . 2. ... . (p - 1)) ≡ i . ii . .... . (p - 1) (mod p)
sp-1 ≡ i (mod p)
sebab 2, .... , p - 1 masing-masing saling prima dengan p.
Keuntungan dari teorema fermat adalah menghitung langsung suatu pangkat.
Sekian artikel kali ini. Mohon maaf apabila ada salah-salah kata
Saya sarankan juga untuk baca artikel di bawah ini :
Saya sarankan juga untuk baca artikel di bawah ini :
Akhir kata wassalamualaikum wr. wb.
Referensi :
- Buku Olimpiade Matematika (Wono Setya Budhi Ph. D)