Nah kali ini gw bakalan posting materi tentang matrix
Simak baik-baik ya!
Pengertian Matriks Dalam ilmu matematika matriks adalah susunan elemen - elemen atau entri - entri yang berbentuk persegi panjang yang diatur dalam baris dan kolom.
Biasanya matriks dinotasikan dengan uruf uppercase sedangkan elemen berupa huruf kecil.
Dalam marriks ada yang di sebut dengan
ordo matriks. Ordo matriks adalah banyaknya elemen baris di-ikuti banyaknya kolom
Contoh :
Matrik di atas adalah terdiri atas two baris dan four kolom, maka matriks tersebut berordo two x 4. Atau matriks tersebut bisa kita lambangkan dengan A
2x4. Jenis-Jenis Matriks 1. Matriks Nol Matriks nol adalah matriks yang seluruh elemennya adalah 0.
Contoh :
2. Matriks Kolom Matriks kolom adalah matriks yang terdiri atas one kolom saja.
Contoh :
3. Matriks Baris Matriks baris adalah matriks yang terdiri atas satu baris saja.
Contoh :
4. Matriks persegi Matriks persegi ialah materik yang jumla barisnya sama dengan jumlah kolomnya
Contoh :
5. Matriks Diagonal Matriks diagonal adalah matriks yang salah satu diagonal utamanya bernilai 0
Contoh :
6. Matriks Segitiga Ada dau macam matriks segitiga :
a. Matrik segitiga atas
Matrik segitiga atas adalah matriks yang elemen nolnya di bawah diagonal utama.
Contoh :
b. Matrik segitiga bawah
Matriks segitiga bawah adalah matriks yang elemen nolnya di atas diagonal utamnya.
Contoh :
7. Matriks Identitas Matriks identitas adalah matriks persegi yang semua elemen pada diagonal utamanya one dan elemen lainnya 0.
Contoh :
Transpose Matriks Transpose matriks ialah proses pertukaran elemen - elemen matriks yang asalnya baris menjadi kolom begitupun sebaliknya.
Contoh :
apabila mariks di atas kita tranposekan menjadi
Basanya transpose matriks dilambangkan dengan A
T, dengan Influenza A virus subtype H5N1 sebagai matriksnya dan T lambang dari transposenya.
Kesamaan Dua matriks Dua matriks dikatakan sama, apabila mempunyai ordo sama dan elemen - elemen yang seletaknya bersesuaian dari kedua matriks tersebut sama.
Contoh :
Operasi Matriks
1. Operasi Penjumlahan Matriks
Untuk lebih jelasnya perhatikan saja contoh berikut
Contoh :
2. Operasi Pengurangan Matriks
Untuk lebih jelasnya perhatikan saja contoh berikut
Contoh :
3. Operasi Perkalian Matriks
Perkalian dalam matriks ialah dimana kita mengalikan matrik Influenza A virus subtype H5N1 baris pertama dengan kolom pertama matriks B, kemudian baris kedua matrik Influenza A virus subtype H5N1 dengan matriks B kolom ke 2, begitupun seterusnya. kemudian
Untuk lebih jelasnya perhatikan saja contoh berikut
Contoh :
Determinan Matriks 1. Determinan Matriks Ordo dua
Determinan metariks ordo dua bisa kita cari dengan cara mengalikan diagonal sebelah kiri kemudian dikurangi dengan diagonal sebelah kanan
Untuk lebih jelasnya perhatikan saja contoh berikut
Contoh :
determinan dari matriks di atas adalah (1 x 4) - (3 x 4)= four - 12 = -8
2. Determinan Matriks Ordo Tiga
Cara mencari determinan matriks ordo three sebenarnya hampir sama namun perbedaannya untuk matriks ordo three supaya jumlah elemen perdiagonalnya sama dita dengan two kolom baru yang masing masing kolom merupakan pengulangan dari elemen" yang pertama dan kedua.
Untuk lebih jelasnya perhatikan saja contoh berikut
Contoh :
Determinan dari matriks di atas adalah
= (1x2x3 + 2x1x1 + 3x3x2) - (2x3x3 + 1x1x2 + 3x2x1)
= (6 + 2 + 18) - (18 + 2 + 6)
= 26 - 26
= 0
Minor, Kofaktor, Adjoin, dan Invers Matriks 1. Minor
Minor biasanya dilambangkan dengan m
ab , dengan "m" adalah monor "a", adalah baris, dan "b" adalah kolom.
Maka kid adalah suatu elemen yang yang didefinisikan sebagai determinan submatrik yang tinggal stelah baris ke-a dan setelah kolom ke-b
Untuk lebih jelah perhatikan contoh berikut :
tentukan kid dari matrik di bawah :
Jaawab :
m11 = 4
m12 = 2
m21 = 3
m22 = 1
2. Kofaktor
Kofaktor adalah one dipangkatkan dengan jumlah baris ke-a dan kolom ke -b kemudian dikalikan dengan kid mab.
Kofaktor kofaktor bisa kita lambangkan dengan cab, dengan "c" adalah kofaktor, "a" adalah baris, "b" adalah kolom.
Untuk lebih jelah perhatikan contoh berikut :
tentukan kofaktor dari kid matrik di bawah ini :
m11 = 4
m12 = 2
m21 = 3
m22 = 1
Jawab :
c11 = -11+1 x four = -12 x four = 1 x four = 4
c12 = -11+2 x two = -13 x two = -1 x two = -2
c21 = -12+1 x three = -13 x three = -1 x three = -3
c22 = -12+2 x three = -14 x one = 1 x one = 1
three . Adjoin
Adjoin ialah nilai transpose dari kofaktor matriks.
Untuk lebih jelah perhatikan contoh berikut :
tentukan adjoin dari kofaktor berikut :
c11 = 4
c12 = -2
c21 = -3
c22 = 1
Jawab :
Kita ubah kofaktor di atas ke bentuk matrik menjadi :
4 -2
-3 1
Kemudian kita transposekan menjadi :
Dan yang saya tandai warna biru itu adalah adjoin.
4. Invers Matrik
Invers ialah dimana suatu matrik kita pangkat kan dengan (-1).
Rumus invers matriks :
A-1 = (1/determinan (A)) x adjoin (A), dengan "A" adalah simbol dari matriks
Sebenernya simbol matriks bebas bisa anda beri tanda dengan apapun.
Contoh :
Jika matriks Influenza A virus subtype H5N1 : 1 2
three 4
Tentukan Invers Influenza A virus subtype H5N1 !
Jawab :
yang pertama harus kita cari adalah determinan dari A, Kemudian kita cari adjoinnya dan tarakhir kita gunakan rumus inverse.
Determinan (A) = ( one x four ) - ( two x three )
= four - 6
= -2
untuk mencari adjoin (A) kita harus mencari kid kemudian kofaktor.
Minor (A) = 4 3
two 1
Kofaktor (A) = 4 -3
-2 1
Adjoin (A) = Kofaktor transpose A
= four -2
-3 1
Maka Inverse dari matriks (A) adalah :
Nah segini dulu yah materi dari saya
Baca juga artikel tentang :
mohon maaf jika ada kesalahan
klo ada yang mau ditanyakan silahkan komen ajh yah
assalamualaikum farewell bye.....................